
- 《中国期刊网》、《中国学术期刊》(光盘版)全文收录期刊
- 《中国学术期刊综合评价数据库》来源期刊
- 》《万方数据-数字化期刊群》、《中文科技期刊数据库》全文收录期刊
- 《中国核心期刊(遴选)数据库》收录期刊
- ○《CEPS思博网-中文电子期刊服务》收录期刊
- 《中国数学文摘》、《中国数学文献数据库》收录期刊
- 2000年获"陕西省优秀科技期刊一等奖"

萬等数學研究

陳音身題

GAODENG SHUXUE YANJIU STUDIES IN COLLEGE MATHEMATICS

高等数学研究

STUDIES IN COLLEGE MATHEMATICS

第 13 卷第 4 期 (总第 138 期) 2010 年 7 月出版 (1954 年创刊) 国内外公开发行

主管: 陕西省科学技术协会主办: 西北工业大学 陕西省数学会

编委会主任: 崔俊芝

副 主 任: (按姓氏笔划为序)

叶正麟 徐 伟 聂铁军 龚冬保

常务编委: (按姓氏笔划为序)

王寿生 王国正 王金金 叶正麟

刘三阳 张肇炽 陆 全 武忠祥

赵彦晖 徐 伟 徐文雄 聂铁军

龚冬保 崔俊芝 褚维盘

编辑部

主 编:张肇炽

主 任: 王寿生

成 员: 王寿生 张肇炽 聂铁军

王 群 阿 度

编辑出版:高等数学研究编辑部

地 址:西安市西北工业大学

邮 编: 710072

电话/传真: 86-29-88491574

编辑信箱: gdsxyj@163.com

投稿信箱: gdsxyj @yeah.net

业务信箱: gdsxyj@126.com

网 址: www.nwpu.edu.cn/gdsxyj

blog.163.com/gdsxyj

印刷装订:陕西丰源印务有限公司

邮发代号: 52-192

国 外 代 号: BM2987

国内总发行: 陕西省邮政报刊发行局

国外总发行:中国国际图书贸易总公司

ISSN 1008-1399 CN 61-1315/O1

国内定价: ¥12 00 元 国外定价: \$12 00 元

目 录

特稿		
谈谈在微积分中引入实无限小量的问题	徐利治	(002)
专题研究		
带一个插值点的回归模型的参数分析	颜宁生	(006)
初始可行基的判定	张文建	(009)
矩阵的奇异值与特征值的关系探究及应用 刘长河,	高圣洁	(011)
L-预余拓扑空间中的理想 ······	郭连红	(014)
两类树的独立集多项式的单峰性 李晓军,	曹世鹏	(017)
获得参数最短置信区间长度的条件 陈秋华, Fan Ky 不符式的 个新改进	王冬琳	(021)
Fan Ky 不等式的一个新改进	徐杲实	(024)
一类一阶常微分方程初值问题的无穷多解性 王海玲,		(027)
一类非线性奇摄动 Dirichlet 边值问题的匹配解法 ······ 吴超,	欧阳成	(029)
推广及应用		
一类特殊级数的和函数	张维荣	(033)
n次单位根在代数问题中的应用 ······ 赵丽棉,	黄基廷	(035)
一类函数项级数收敛的一个结论	戴振强	(037)
Lebesgue 测度等测包及其应用 ·····严忠权,	罗会亮	(042)
本征值问题的统一推导方法及讨论 ····································	谢广喜 范舒羽	(045) (048)
L(V) 是无限维中心代数的初等证明 樊启毅,周惊雷,	唐曾林	(050)
全概率公式的推广及应用 陈光曙,	王新利	(053)
从北京奥运会看概率在体育中的体现和应用	曹宏举	(055)
方法与技巧	H see 1	
一类常系数线性微分方程特解的求法 龚东山,	刘岳巍	(058)
用算子升阶法求一类微分方程的特解	月氏武	(061)
过三次曲线上一点的切线的求法	高焕江	(063)
一阶非线性常微分方程奇解的求法 王五生,付美玲,	侯宗毅	(065)
概率统计中一个定理的证明 金鉴禄,	王纯杰	(068)
一道常微分方程例题的多种解法	冯新龙	(069)
计算数学期望和概率的条件化方法	朱福国	(071)
超几何分布的数学期望和方差的定义求法	匡能晖	(073)
常系数非齐次线性微分方程特解的另一种求法 陈利如	E, 赖霞	(075)
交流与探讨		
全能近似分析简介 曹俊云,	杨健辉	(078)
微分流形上自然基底的记号问题	陈跃	(085)
具有延误休假时间的排队系统队长分布 刘晓燕,		(087)
关于半连续函数与凸函数的注记 黄金莹		(091)
关于凸函数定义的几点思考 曾明,		(094)
不同类型随机变量和差积商的分布		(097)
"复数域上微分中值定理新证"注记 ************************************		(099)
有关一致空间完备性证明的修正 ······ 沈晨, 数列极限证明中的 <i>←N</i> 语言问题 ······		(102) (103)
	盲思珍	(103)
教学随议	m/s are les	
数学分析教学中学到的和想到的		(106)
"数学分析"课的教学与研究 ····································		(110) (115)
发性代数教学谈 ····································		(117)
向量组线性相关性的教学方法与技巧		(119)
定积分学习现状的调查和思考	凌海生	(122)
直觉在概率求解过程中的误导 黎森, 柏汇松	、王闯	(125)
均匀分布与正态分布的教学设计	李国安	(128)
简 讯		
2010年邵逸夫数学科学奖公布(009);本刊成为邵逸夫奖	基全合金	合作雄
体(012);《华罗庚文集》在京首发(032);《吴文俊与中		
出版 (036): 《九章筭术译注》出版 (036)		1

一类一阶常微分方程初值问题的无穷多解性

王海珍, 张志军

(烟台大学数学与信息科学学院,山东烟台,264005)

应用分离变量法,得到了一类一阶微分方程初值问题 $u'(t) = b(t) f(u(t)), t \ge 0, u(0) = 0$ 存在无穷 多个解的充分必要条件.并给出了全部解.

一阶非线性微分方程;初值问题;无穷多解

中图分类号 0172.1

一阶常微分方程初值问题

$$u'(t) = \sqrt{u(t)}, t > 0, u(0) = 0$$
 (1)

是一阶非线性常微分方程的基本问题[1-3],求解方法 就是通常的分离变量法. 然而, 无论是在本科生常微 分方程教学中还是在研究生微分方程定性理论教学 中,学生都会出现这样的问题:仅仅得到了问题(1) 的两个解,即平凡解

$$_{\prime\prime} \equiv 0$$

和正解(当t > 0时,u(t) > 0)

$$u(t) = \frac{1}{4}t^2, t > 0,$$

而忽视了这样的无穷多个非负解:对任意的 c > 0,

$$u_{c}(t) = \begin{cases} 0, & 0 \leq t \leq c, \\ \frac{1}{4}(t-c)^{2}, & t \geq c. \end{cases}$$

这就是微分方程中非常有名的例子. 在平凡解和正解 围成的区域中任取一点,都有问题(1)的解经过该 点,即解充满了该区域.

出现上述问题的原因应该在于,学生没有真正理 解微分方程初值问题"解"的定义和几何意义,而仅仅 将问题(1)的求解作为应用分离变量法的一个例子.

以下应用分离变量法,得到了一类较一般的一阶 常微分方程初值问题

u'(t) = b(t) f(u(t)), t > 0, u(0) = 0的所有无穷多个解.

定理 1 设 b 和 f 分别满足

(b1)
$$b \in C(0,\infty)$$
, $\int_0^1 b(s) dx < \infty$,

收稿日期: 2008 - 10 - 21; 修改日期: 2010 - 05 - 04.

基金项目:国家自然科学基金项目(10071066),山东省自然科学基金 项目(2009ZRB01795).

作者简介:王海玲(1973-),女,山东烟台人,讲师,主要从事非线性常 微分方程研究(EnlaiClzhangzi@xcleredie drournal Electronic P

从事微分方程研究, Email: chinazjzhang@yahoo.com.cn.

张志军(1963一),男,山东烟台人,博士,教授,博士生导师,

(f1) $f \in C[0,\infty), f(0) = 0, f(s) > 0, \forall s > 0.$

则问题(2)存在无穷多个解的充分必要条件是 ƒ满足

$$\int_0^1 \frac{\mathrm{d}x}{f(s)} < \infty. \tag{3}$$

问题(2)的解属于 $C[0,\infty) \cap C^1(0,\infty)$. 而 当 $b \in C[0,\infty)$ 时,解属于 $C^1[0,\infty)$.

明显地, $u \equiv 0$ 是平凡解. 证明

充分性 先求解正解.由(3),应用分离变量法, 并对s从0到t积分,可得

$$\int_0^{u(t)} \frac{\mathrm{d}v}{f(v)} = \int_0^t b(s) \mathrm{d}s, \ t > 0.$$

因此,

$$u(t) = \varphi(B(t)), t > 0.$$

这里,

$$B(t) = \int_0^t b(s) \mathrm{d}s, \ t > 0,$$

而 Ψ表示

$$\Gamma(\tau) = \int_0^{\tau} \frac{\mathrm{d}v}{f(v)}, \ \tau \geqslant 0$$

的反函数,即 9满足

$$\int_0^{\varphi(x)} \frac{\mathrm{d}v}{f(v)} = x, \ x \geqslant 0,$$

或者

$$\varphi'(x) = f(\varphi(x)),$$

 $\varphi(x) > 0, x > 0, \varphi(0) = 0.$

再求非负解. 对任意的 c > 0, 由(3) 和

$$u_c(c)=0$$
,

对方程(2) 应用分离变量法,并对s从c到t积分,可得

$$\int_0^{u_c(t)} rac{\mathrm{d}v}{f(v)} = \int_c^t b(s) \mathrm{d}s = \ B(t) - B(c), \ t \geq c. \ u_c(t) = \varphi(B(t) - B(c)), \ t \geq c.$$

因此,非负解是

 $\begin{cases} 0, & 0 \leqslant t \leqslant c; \\ \text{ouse. All rights reserved.} & \text{http://www.cnki.i} \\ \varphi(B(t) - B(c)), & t \geqslant c. \end{cases}$

用反证法.若 必要性

$$\int_0^1 \frac{\mathrm{d}s}{f(s)} = \infty.$$

既然问题(2) 的解单调非减,设 u 是问题(2) 的任一非凡解,即存在 t1 \geq 0,使得

$$u_1(t) = 0, t \in [0, t_1];$$

 $u_1(t) > 0, t > t_1.$

对任意的 $\epsilon > 0$, 由(f1) 和(b1), 对方程(2) 应用分离变量法, 并对 $s \cup M_1 + \epsilon \cup M_2$ 积分, 可得

$$\int_{u_1(t+\varepsilon)}^{u_1(t)} \frac{\mathrm{d}v}{f(v)} = \int_{t_1+\varepsilon}^{t} b(s) \mathrm{d}s \leq B(t),$$

$$t \geq t_1 + \varepsilon.$$

今 ε→ 0, 得到

$$\int_{0}^{u_{1}(t)} \frac{\mathrm{d}s}{f(s)} \leq \mathrm{B}(t) < \infty, \ t > t^{1}.$$

与假设矛盾. 因此必要性得证. 定理证毕.

例 1 当
$$f(s) = s^p$$
, $p \in (0,1)$ 时,
$$\Gamma(\tau) = \frac{\tau^{1-p}}{1-p}, \tau > 0,$$

$$\varphi(x) = ((1-p)x)^{\frac{1}{1-p}}, \ x > 0.$$

问题(2)的全部解分别包括:

$$u \equiv 0$$
,

$$u(t) = ((1-p)B(t))^{\frac{1}{1-p}}, \ t \geqslant 0,$$

$$u_c(t) = \begin{cases} 0, & 0 \leqslant t \leqslant c; \\ ((1-p)(B(t)-B(c)))^{\frac{1}{1-p}}, \ t \geqslant c > 0. \end{cases}$$
何 2 当 $f(s) = (s+1)(\ln(s+1))^p, \ p \in (0,1)$ 时,
$$\Gamma(\tau) = \frac{(\ln(\tau+1))^{1-p}}{1-p}, \ \tau > 0,$$

$$\varphi(x) = \exp[((1-p)x)^{\frac{1}{1-p}}] - 1, \ x > 0.$$

问题(2) 的全部解是

 $u \equiv 0$.

$$u(t) = \exp[(1-p)B(t)^{\frac{1}{1-p}}] - 1, \ t \ge 0,$$

$$u_c = \begin{cases} 0, & 0 \le t \le c; \\ \exp[((1-p)(B(t)-B(c)))^{\frac{1}{1-p}}] - 1, \ t \ge c > 0. \end{cases}$$

参考文献

- [1] Walter W. Ordinary Differential Equations [M]. Springer-Verlag, 1998:53-104.
- [2] 丁同仁·常微分方程定性方法的应用[M]·北京: 高等教育出版社, 2004:47-58.
- [3] 丁同仁,李承治,常微分方程教程[M]. 北京:高等教育出版社,1991.94-113.

Multi-solutions to a Class of First Order Ordinary DE with Initial Value

WANG Hai Ling, ZHANG Zhi Jun

(School of Mathematics and Informational Science, Yantai University, Yantai, Shandong, 264005, PRC)

Abstract: From the variable-separating method and inverse function theorem, a sufficient and necessary condition for the existence of infinitely many solutions to a class of first order ordinary differential equations, $u'(t) = b(t)f(u(t))(t \ge 0)$, with initial value, u(0) = 0, is derived. Some examples are show here and their all solutions are given.

Keywords: first order differential equations; initial value problems; infinitely many solutions.

简 讯

《华罗庚文集》在京首发

中科院数学研究所和科学出版社 2010 年 5 月 29 日在北京中关村图书大厦举办《华罗庚文集》新书首发式,以此纪念我国著名数学家华罗庚先生诞辰 100 周年.

华罗庚是我国在世界上最有影响的数学家之一,是我国解析数论、典型群、矩阵几何学、自守函数论与多复变函数等研究的创始人与奠基者。《华罗庚文集》由科学出版社出版,全书共9卷,包括数论3卷、代数2卷、多复变函数论2卷、应用数学2卷.该书获得了国家出版基金支持,王元院士、万哲先院士、陆启铿院士、杨乐院士等多名数学学者曾参与编纂工作。

华罗庚先生的弟子万哲先院士、中科院数学所所长周向宇、中科院华罗庚数学研究中心主任杨德庄等出席了首发式,并从孙研、高人等方面介绍了华罗庚的点越贡献。杨德庄同时还派到。徐罗康不仅在常术领域贡cnki.r献卓著,并且也拿出很大一部分精力去做科普工作,不过遗憾的是,像华罗庚这样"大师型"的科普工作者为数甚少.