1 、Yu lixin, initial value problems of second order nonlinear impulsive integro-defferential equations in Banach space, Indian J. pure appl. Math, 2003,34(3) ,405-427.
2 、Liu Lishan#*, Yu Lixin, Cho Yeol Je, Extremal solutions of initial value problem for nonlinear second order impulsive integro-differential equations of volterra type in banach spaces, 8th International Conference on Nonlinear Functional Analysis and Applications, South Korea, 2004.8.09-8.13. 3、于立新,混合单调增算子不动点的Mann 迭代序列的收敛性,曲阜师范大学学报,2001(1),17-20. 4、于立新,刘立山,Banach空间中一阶非线性脉冲积分--微分方程初值问题解的存在性,系统科学和数学,2003, 23(2),257-265. 5、于立新,郭宜明,一类非线性算子方程唯一解的迭代序列的收敛性及其应用,工程数学学报,2003,20(1), 49-54. 6、于立新, 一类拟线性双曲型方程组混合初-边值问题的半整体C^1解,数学年刊,25A(2004), 549-560. 7 、 Li Tatsien, Yu Lixin , Contrôlabilité exacte frontiè pour les equations des ondes quasi linéaires unidimensionnelles, C.R.Acad.Sci.Pairs,Ser.I 337(2003) ,271-276. 8 、 Li Tatsien, Yu Lixin: Exact controllability for fist order quasilinear hyperbolic systems with zero eigenvalues,Chin.Ann.Math.,24B(2003) ,415-422. 9 、Yu Lixin, Exact boundary controllability for higher order quasilinear hyperbolic equations, Applied Mathematics, A journal of Chinese Universities, 2005,20B(2), 127-141. 10 、Li Tatsien, Yu Lixin, Exact boundary controllability for 1-D quasilinear wave equation., Submitted to SIAM J. Control Optim, 2006, 45(3), 1074-1083. 11 、于立新,二阶拟线性双曲型方程组的精确边界能控性,工程数学学报,2005,22(2),199-211。 12、于立新,郭宜明,一类拟线性双曲型方程组混合初-边值问题的局部C1解,烟台大学学报,2006,19(1),6-11。 13、王志强, 于立新, 一维绝热流方程组的精确边界能控性,高校应用数学学报,2008,23A(1),35-40。 14 、Lixin Yu, Exact boundary observability for a kind of second order quasilinear hyperbolic systems and its applications, Nonlinear Anal,72(12), 4452-4465,2010. (SCI) 15 、Lixin Yu, Exact boundary Controllability for a Kind of Second Order Quasilinear Hyperbolic Systems and its applications, Math. Meth. Appl. Sci.,33(3), 263-272,(2010).(SCI) 16 、Lixin Yu, Exact boundary observability for a kind of second order quasilinear hyperbolic system,Nonlinear |