加入收藏 | 访问烟台大学首页
首页 > 师资力量 > 正文

王 燕

作者: 时间:2018-06-08 点击数:

     

 

姓名

王燕

性别

出生年月

1974.04

 

籍贯

山东茌平

政治面貌

党员

职称

教授

毕业学校

北京大学

学位

博士

专业

基础数学

研究方向

拓扑图论,代数图论,图机器学习理论

通信地址

山东省烟台市 烟台大学数学院

邮编

264005

联系电话

13465547531

E-mail

wang_yan@pku.org.cn

   

时 间

单位

经 历

2003.03-至今

烟台大学

教师

2002.02-2003.03

韩国浦项工大

博士后

2001.07-2002.02

曲阜师范大学

教师

讲授课程

本科:高等代数,近世代数,解析几何;研究生:抽象代数,有限群,代数图论,表示论基础

   

1.  国家自然科学基金面上项目“拟本原图结构”(2002-2005,课题组主要成员);

2.  国家自然科学基金面上项目“Cayley图理论与应用研究”(2006-2009,子课题负责人);

3.  国家自然科学基金青年基金“有限群在图作用中的若干研究与应用”(2009-2011,主持人,独立);

4. 山东省自然科学基金Cayley图理论,分批调度问题”(2008-2010,主持人)。

5. 山东省自然科学基金“高对称地图”(2011-2014,主持人)

6. 国家自然科学基金天元专项“群论与组合数学”研讨会(2011,主持人);

7. 国家外国专家局项目(Corresponding to J.H.Kwak,2011.

8. 国家自然科学基金面上项目“地图理论研究:正则、半正则地图以及地图的外对称”(2014-2017,主持人)

9. 国家自然科学基金面上项目“图上随机游动和图的中间特征值研究”(主要成员,2018-2021);

10. 国家自然科学基金面上项目“亚循环网络及网络上的编码”(主要成员,2017-2020

11. 山东省自然科学基金面上项目“具有特殊子群的有限群的若干研究”(主要成员,2017-2020

12. 山东省自然科学基金面上项目“地图理论研究:广义凯莱地图与双凯莱超地图”(主持人,2021-2023

主要科研论文

2026

Yan Wang, Kai Yuan, Jian Xun LiPerfect codes of bi-Cayley graphsJournal of Combinatorial Theory, Series A 217 (2026) 106079.

2025

1. Yan Wang, Qian Zhang, Kai Yuan, Kirchhoff indices of Cayley graphs on Applied Mathematics and Computation 489 (2025) 129132.

2. Kai Yuan, Yan WangCayley hyper-digraphs and Cayley hypermapsJournal of Algebraic Combinatorics (2025) 62:15.

2024

1.Yan Wang, Shuo Zhu, Kai YuanResistance Distance and Kirchhoff Index of Cayley Graphs on Generalized Quaternion GroupsInternational J. of Quantum Chemistry, ( 2024) 124: e27471.

2. Štefan Gyürki, Robert Jajcay, Pavol Jánošc, Jozef Širán, Yan Wang,

Using bi-coset graphs to construct small regular and biregular graphsDiscrete Math.  347 (2024) 113946.

3. Robert Jajcay, Jozef Siran, Yan Wang, Generalized Cayley maps and their Petrie duals,  Ars Mathematica Contemporanea, (2024), 24, #P3.01

2023

1. Kai Yuan, Yan Wang, Classification of minimal Frobenius hypermapsArs Mathematica Contemporanea(2023)23, #2.03.

2. Yan Wang, Xing ZhangSubgroup perfect codes of finite groupsAdvanced in Math.Vol. 52, No 1, (2023)46-52.

2020

Hai Peng Qu, Yan Wang, Kai Yuan, Frobenius groups which are the automorphism groups of orientably-regular maps, ARS MATHEMATICA CONTEMPORANEA 19 (2020) 363374

https://doi.org/10.26493/1855-3974.1851.b44

2019

Robert Jajcay, Cai-Heng Li, Jozef Siran, Yan Wang, Regular and orientably-regularmaps with quasiprimitive automorphism groups on vertices,

Geometriae Dedicata (2019) 203:389418, https://doi.org/10.1007/s10711-019-00440-6

2018

1. K. Yuan, Y. Wang and H.P. Qu, Classification of regular balanced Cayley maps of minimal non-abelian metacyclic groups, Ars Mathematica Contemporanea 14 (2018) pp. 433-443.

2. Hou Dongdong, Wang Yan, Qu Haipeng, Regular Balanced Cayley maps of p-groups with a cyclic maximal subgroup, Advanced in Math. Vol. 47, No. 3 (2018).

2016

Yuan Kai, Wang Yan and Jin Ho Kwak, Enumeration of skew-morphisms of cyclic groups of small orders and their corresponding Cayley maps, Advances in Math. Vol. 45, No. 1 (2016) pp 21-36.

2014

He, Zhihong; Volkmann, Lutz; Wang, YanComplementary Cycles in Almost Regular Multipartite TournamentsArs Combinatoria, 113A, pp 201-224, 2014/1.

2013

Yang, Yujun; Wang, Yan; Li, YiThe Global Cyclicity Index of Benzenoid Chains Journal of Chemistry, 2013.

2012 

R. Bruce Richter, Jozef Širáň and Yan Wang, Self-dual and self-petrie-dual regular maps, Article first published online: 9 FEB 2011 | DOI: 10.1002/jgt.20570

2011

R.Q. Feng, R. Jajcay and Y. Wang, Regular t-balanced Cayley maps for abelian groups, in Discrete Mathematics.

2010

1. Yan Wang, Rongquan Feng, Jaeun Lee, Typical Frobenius Coverings,  Acta Math. Sinica, English Series, Vol.26, No. 11, (2010) 2209-2214.

2. Yan Wang, Wenwen Zhang, Kirchhoff Index of Cyclopolyacenes, Z. Naturforsch. 65a, (2010) 865 - 870 .

3. Yan Wang, Wenwen Zhang, Kirchhoff Index of Linear Pentagonal Chains, International J. of Quan. Chem.110, No.9 (2010) 1594-1604.

4.  Z.H. He and Y. Wang, Weakly Cycle Complementary $3$-partite Tournaments, published on line by Graphs and Combinatorics

5.  Jozef Sirán and Yan Wang, Maps with highest level of symmetry that are   even more symmetric than other such maps: Regular maps with large exponent groups, in Combinatorics and Graphs, Contemporary Mathematics, vol. 531, Amer. Math. Soc., Providence, RI, 2010, pp. 95-102.

2009

Y. Wang, A family of tetravalent Frobenius graphs, Ars Combinatoria 92 (2009), 131-136.

2007

Y. Wang, One Class of Valency-4 Frobenius Graphs, Advances in Mathematics, Feb., Vol. 36, No. 1 (2007), 115-118.

2006

Y. Wang, X.G. Fang and D.F. Hsu, On the edge-forwarding indices of Frobenius graphs, Acta Mathematica Sinica, English Series, Nov., Vol. 22, No. 6 (2006), 1735-1744.

2005

1.  Y. Wang and J.H. Kwak, Frobenius maps, Discrete Mathematics 303 (2005), 117-130.

2.  Y. Wang and R.Q. Feng, Regular balanced Cayley maps for cyclic, dihedral and generalized quaternion groups, Acta Mathematica Sinica, English Series, Aug., Vol. 21, No. 4 (2005), 773-778.

2004

J. H. Kwak and Y. Wang, Real genus of minimal nonnilpotent groups, J. of Algebra 281(2004), 150-160.

1999

Y. Wang and F.Yu, When closed graph manifolds are finitely covered by surface bundles over  , Acta Mathematica Sinica, English Series, 15(1999), 11-20.

 

Copyright © 2018 All Rights Reserved 烟台大学数学与信息科学学院
版权所有  鲁ICP备15000288 号