2026年 Yan Wang, Kai Yuan, Jian Xun Li,Perfect codes of bi-Cayley graphs,Journal of Combinatorial Theory, Series A 217 (2026) 106079. 2025年 1. Yan Wang, Qian Zhang, Kai Yuan, Kirchhoff indices of Cayley graphs on ,Applied Mathematics and Computation 489 (2025) 129132. 2. Kai Yuan, Yan Wang,Cayley hyper-digraphs and Cayley hypermaps,Journal of Algebraic Combinatorics (2025) 62:15. 2024年 1.Yan Wang, Shuo Zhu, Kai Yuan,Resistance Distance and Kirchhoff Index of Cayley Graphs on Generalized Quaternion Groups, International J. of Quantum Chemistry, ( 2024) 124: e27471. 2. Štefan Gyürki, Robert Jajcay, Pavol Jánošc, Jozef Širán, Yan Wang, Using bi-coset graphs to construct small regular and biregular graphs,Discrete Math. 347 (2024) 113946. 3. Robert Jajcay, Jozef Siran, Yan Wang, Generalized Cayley maps and their Petrie duals, Ars Mathematica Contemporanea, (2024), 24, #P3.01 2023年 1. Kai Yuan, Yan Wang, Classification of minimal Frobenius hypermaps,Ars Mathematica Contemporanea,(2023),23, #2.03. 2. Yan Wang, Xing Zhang,Subgroup perfect codes of finite groups, Advanced in Math.,Vol. 52, No 1, (2023):46-52. 2020年 Hai Peng Qu, Yan Wang, Kai Yuan, Frobenius groups which are the automorphism groups of orientably-regular maps, ARS MATHEMATICA CONTEMPORANEA 19 (2020) 363–374 https://doi.org/10.26493/1855-3974.1851.b44 2019年 Robert Jajcay, Cai-Heng Li, Jozef Siran, Yan Wang, Regular and orientably-regularmaps with quasiprimitive automorphism groups on vertices, Geometriae Dedicata (2019) 203:389–418, https://doi.org/10.1007/s10711-019-00440-6 2018年 1. K. Yuan, Y. Wang and H.P. Qu, Classification of regular balanced Cayley maps of minimal non-abelian metacyclic groups, Ars Mathematica Contemporanea 14 (2018) pp. 433-443. 2. Hou Dongdong, Wang Yan, Qu Haipeng, Regular Balanced Cayley maps of p-groups with a cyclic maximal subgroup, Advanced in Math. Vol. 47, No. 3 (2018). 2016年 Yuan Kai, Wang Yan and Jin Ho Kwak, Enumeration of skew-morphisms of cyclic groups of small orders and their corresponding Cayley maps, Advances in Math. Vol. 45, No. 1 (2016) pp 21-36. 2014年 He, Zhihong; Volkmann, Lutz; Wang, Yan,Complementary Cycles in Almost Regular Multipartite Tournaments,Ars Combinatoria, 113A, pp 201-224, 2014/1. 2013年 Yang, Yujun; Wang, Yan; Li, Yi,The Global Cyclicity Index of Benzenoid Chains ,Journal of Chemistry, 2013. 2012年 R. Bruce Richter, Jozef Širáň and Yan Wang, Self-dual and self-petrie-dual regular maps, Article first published online: 9 FEB 2011 | DOI: 10.1002/jgt.20570 2011年 R.Q. Feng, R. Jajcay and Y. Wang, Regular t-balanced Cayley maps for abelian groups, in Discrete Mathematics. 2010年 1. Yan Wang, Rongquan Feng, Jaeun Lee, Typical Frobenius Coverings, Acta Math. Sinica, English Series, Vol.26, No. 11, (2010) 2209-2214. 2. Yan Wang, Wenwen Zhang, Kirchhoff Index of Cyclopolyacenes, Z. Naturforsch. 65a, (2010) 865 - 870 . 3. Yan Wang, Wenwen Zhang, Kirchhoff Index of Linear Pentagonal Chains, International J. of Quan. Chem.110, No.9 (2010) 1594-1604. 4. Z.H. He and Y. Wang, Weakly Cycle Complementary $3$-partite Tournaments, published on line by Graphs and Combinatorics 5. Jozef Sirán and Yan Wang, Maps with highest level of symmetry that are even more symmetric than other such maps: Regular maps with large exponent groups, in Combinatorics and Graphs, Contemporary Mathematics, vol. 531, Amer. Math. Soc., Providence, RI, 2010, pp. 95-102. 2009年 Y. Wang, A family of tetravalent Frobenius graphs, Ars Combinatoria 92 (2009), 131-136. 2007年 Y. Wang, One Class of Valency-4 Frobenius Graphs, Advances in Mathematics, Feb., Vol. 36, No. 1 (2007), 115-118. 2006年 Y. Wang, X.G. Fang and D.F. Hsu, On the edge-forwarding indices of Frobenius graphs, Acta Mathematica Sinica, English Series, Nov., Vol. 22, No. 6 (2006), 1735-1744. 2005年 1. Y. Wang and J.H. Kwak, Frobenius maps, Discrete Mathematics 303 (2005), 117-130. 2. Y. Wang and R.Q. Feng, Regular balanced Cayley maps for cyclic, dihedral and generalized quaternion groups, Acta Mathematica Sinica, English Series, Aug., Vol. 21, No. 4 (2005), 773-778. 2004年 J. H. Kwak and Y. Wang, Real genus of minimal nonnilpotent groups, J. of Algebra 281(2004), 150-160. 1999年 Y. Wang and F.Yu, When closed graph manifolds are finitely covered by surface bundles over , Acta Mathematica Sinica, English Series, 15(1999), 11-20. |