加入收藏 | 访问烟台大学首页
首页 > 师资力量 > 正文

高 猛

作者: 时间:2021-11-10 点击数:

     

 

姓名

高猛

性别

出生年月

198110


籍贯

山东邹城

政治面貌

中共党员

职称

教授

毕业学校

兰州大学

学位

博士

专业

应用数学

研究方向

大数据分析与应用统计、复杂网络与应用

通信地址

烟台市莱山区清泉路30

邮编

264005

联系电话

 

E-mail

gaomeng03@hotmail.com; mgao@ytu.edu.cn

   

时 间

单位

经 历

1999.9-2008.12

兰州大学

本科、博士(硕博连读)

2007.10-2008.10

加拿大Alberta大学

访问学者

2009.1-2021.4

中国科学院烟台海岸带研究所

助理研究员、副研究员(岗位研究员)

2021.4至今

烟台大学

教授

讲授课程

本科生:《数理统计》,《非参数统计》,《统计软件》,《时间序列分析》

研究生:《非线性时间序列分析》,《广义线性模型》,《知识产权与文献检索》

   

主持国家级、省部级重点科研课题 7 项;

主要科研论文

1. Gao M., Ge R.J. (2024) Mapping time series into signed networks via horizontal visibility graph. Physica A-Statistical Mechanics and Its Applications, 633: 129404.

2. Gao M. et al. (2023) Complex climate networks of nonlinearly correlated time series. Chaos, Solitons and Fractals, 173: 113650.

3. Gao M. et al. (2023) A modified extreme event-based synchronicity measure for climate time series. Chaos, 33(2): 023105.

4. Gao M. et al. (2022) Nonhomogeneous poisson process model of summer high temperature extremes over China. Stochastic Environmental Research and Risk Assessment, 36(9): 2649-2660.

5. Gao M. et al. (2022) Multifractality of global sea level heights in the satellite altimeter-era. Physica A-Statistical Mechanics and Its Applications, 604: 127903.

6. Gao M. et al. (2021) Associations of atmospheric teleconnections with wintertime extratropical cyclones over East Asia and Northwest Pacific. Climate Dynamics, 57: 2079-2092.

7. Gao M., Zhang H. (2018) Particle smoothing via Markov chain Monte Carlo in general state space models. International Journal of Computing Science and Mathematics, 9: 181-188.

8. Gao M. et al. (2019) SOM-based synoptic analysis of atmospheric circulation patterns and temperature anomalies in China. Atmospheric Research, 220:46-56.

9. Gao M., Zheng H.Z., (2018) Nonstationary extreme value analysis of temperature extremes in China. Stochastic Environmental Research ad Risk Assessment, 32:1299-1315.

10. Gao M. et al. (2018) Artificial neural network model for ozone concentration estimation and Monte Carlo analysis. Atmospheric Environment, 184: 129-139.

11. Gao M., Franzke C.L.E (2017) Quantile Regression-Based Spatiotemporal Analysis of Extreme Temperature Change in China. Journal of Climate, 30: 9897-9914.

12. Gao M. (2013) Detecting spatial aggregation from distance sampling: A probability distribution model of   nearest neighbor distance. Ecological Research, 28: 397-405.

13. Gao M., Zhang H. (2012) Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models. Computers & Geosciences, 44: 70-77.

14. Gao M. (2009) Continuous Probabilistic Analysis to Evolutionary Game Dynamics in Finite Populations. Bulletin of Mathematical Biology, 71(5):1148-59.

15. Gao M., (2009) Chaos in a seasonally and periodically forced phytoplankton-zooplankton system. Nonlinear Analysis-Real World Applications, 10(3):1643-1650.

16. Gao M., Li Z. (2006) Asymptotical stability and spatial patterns of a spatial cyclic competitive system. Applied Mathematics and Computation, 183(2):1165-1169.

 

 

Copyright © 2018 All Rights Reserved 烟台大学数学与信息科学学院
版权所有  鲁ICP备15000288 号