加入收藏 | 访问烟台大学首页

杨旻

作者: 时间:2018-06-08 点击数:

        杨旻  教授, 硕士研究生导师 

        目前的研究领域:数据处理、分析、挖掘以及人工智能

       

        育经历

        2000.9-2005.7 山东大学数学与系统科学学院,计算数学,博士

        1996.9-2000.7 山东大学数学院,信息与计算科学,学士

         

        工作经历

        2006.7-至今 烟台大学,数学与信息科学学院

        2005.7-2006.6 厦门大学,数学学院

        2012.12-2013.1 香港理工大学应用数学系 访问学者

        2010.1-2010.2   香港理工大学应用数学系 访问学者

        2009.6-2009.8   中科院科学与工程计算国家重点实验室 访问学者

         

        基金项目

        2018.3-2021.6 “奇异摄动问题的稳定化局部守恒数值方法及其在多孔介质流中的应用”,山东省自然科学基金 (ZR2018MA008),1/4

        2018.1-2021.12 “奇异摄动问题有限元方法的超逼近性研究”,国家自然科学基金 (11771257),2/6

        2016.1-2019.12 “两阶非线性椭圆问题有限元方法的自适应多重网格算法”,国家自然科学基金 (11571297),2/7

        2015.1-2017.12 “非线性椭圆问题有限体积元方法的后验误差估计和自适应算法”,山东省自然科学基金 (ZR2014AM003),2/5

        2013.1-2015.12 “油藏两相流的局部守恒型多域耦合数值方法及其分析”,国家自然科学青年基金(11201405),主持

        2010.11-2013.11 “非稳态Navier-Stokes问题基于算子分裂的无散度特征有限元方法”,山东省自然科学基金 (ZR2010AQ020),主持

        2010.6-2013.5 “界面问题的高精度有限体积元方法”,省教育厅高等学校科技计划(J10LA01),主持

        2009.6-2012.5 “非线性问题的几类数值方法的后验误差估计与自适应算法”,省教育厅高等学校科技计划(J09LA01),参与

       

        科研奖励

        2010年,山东省高校优秀科研成果二等奖/烟台大学科技进步一等奖,“有限体积元方法的高性能算法及应用”,杨旻、毕春加、陈传军

        2008年,山东省高校优秀科研成果三等奖/烟台大学科技进步一等奖,“有限体积元方法的理论分析及其应用”,毕春加、杨旻、陈传军。

       

        论文目录

        34、杨旻,于宪荣,题库查找问题的一类简单局部采样算法,计算机应用与软件,34(2017), No.12, 216- 219, 239

        33、Jin Zhang, Xiaowei Liu, Min Yang, Optimal order L2 error estimate of SDFEM on Shishkin triangular meshes for singularly perturbed convection-diffusion equations, SIAM J. Numer. Anal. 54 (2016) 2060--2080

        32、Lejuan Wang, Min Yang, A high order finite volume method for one dimensional nonlocal reactive flows of  parabolic type, Math. Method. Appl. Sci., 39 (2016) 2065--2077.

        31、Min Yang, Jiangguo Liu, Qingsong Zou, Unified analysis of higher order finite volume methods for parabolic problems on quadrilateral meshes, IMA J. Numer. Anal., 36 (2016) 872--896

        30、Yanping Lin, Min Yang, Qingsong Zou, L2 error estimates for a class of any order finite volume schemes over quadrilateral meshes, SIAM J. Numer. Anal., 53 (2015) 2030--2050

        29、Min Yang, Jiangguo Liu, Yanping Lin, Pressure recovery for weakly over-penalized discontinuous Galerkin methods for the Stokes problem, J. Sci. Comput.,  2015, 699-715.

        28、Min Yang, Couplings of mixed finite element and weak Galerkin methods for elliptic problems, J. Appl. Math. Computing, 2015, 327-343.

        27、Min Yang, Higher-order finite volume element methods based on Barlow points for one dimensional elliptic and parabolic problems, Numer. Methods PDEs, 2015, 977-994.

        26、Min Yang, Jiangguo Liu, Yanping Lin, Quadratic finite volume methods for elliptic and parabolic problems on quadrilateral meshes: Optimal order errors based on Barlow points, IMA J. Numer. Anal. 33 (2013) 1342-1364.

        25、Chunjia Bi, Yanping Lin, Min Yang, Finite volume element method for  monotone nonlinear  elliptic problems, Numer. Methods PDEs, 29 (2013), 1097-1120.

        24、Yanping Lin, Jiangguo Liu, Min Yang, Finite volume element methods: An overview of recent developments, Int. J. Numer. Anal. Model. B, (2013) 14-34.

        23、Min Yang,  L2 error estimation of a quadratic finite volume element method for pseudo-parabolic equations in three spatial dimensions, Appl. Math. Comput. 218 (2012) 7270-7278.   

        22、Min Yang, Jiangguo Liu, A quadratic finite volume element method for parabolic problems on quadrilateral meshes, IMA J Numer. Anal. 31 (2011) 1038-1061.   

        21、Min Yang, A posteriori error analysis of nonconforming finite volume elements for general second order elliptic PDEs, Numer. Methods PDEs 27(2011) 277-291.

        20、Min Yang, Two time level ADI finite volume method for a class of second order hyperbolic problems, Appl. Math. Comput. 215(2010) 3239-3248.

        19、Min Yang, Chunjia Bi, Jiangguo Liu, Postprocessing of a finite volume element method for semilinear parabolic problems, ESAIM: Math. Model. Numer. Anal. (M2AN)  43(2009) 957-971.

        18、Min Yang, Chuanjun Chen, ADI quadratic finite volume element methods for second order hyperbolic problems, J. Appl. Math. Computing 31(2009) 395-411.

        17、Min Yang, Huailing Song, A postprocessing finite volume element method for time-dependent Stokes equations, Appl. Numer. Math. 59 (2009) 1922-1932.

        16、Min Yang, Jiangguo Liu, Chuanjun Chen, Error estimation of a quadratic finite volume method on right quadrangular prism grids, J. Comput. Appl. Math. 229 (2009), 274-282.

        15、Chuanjun Chen, Min Yang, Chunjia Bi, Two grid methods for finite volume element approximations of nonlinear parabolic equations, J. Comput. Appl. Math. 228 (2009) 123-132.

        14、Min Yang, Yirang Yuan, A symmetric characteristic finite volume element scheme for nonlinear convection-diffusion problems. Acta Math. Appl. Sin. Engl. Ser. 24 (2008), no. 1, 41-54.

        13、Min Yang, A multistep finite volume method with penalty for thermal convection problems in two or three dimensions. J. Syst. Sci. Complex. 21 (2008), no. 1, 129-143.

        12、Min Yang, Analysis of second order finite volume element methods for pseudo-parabolic equations in three spatial dimensions. Appl. Math. Comput. 196 (2008), no. 1, 94-104.

        11、Min Yang, Multistep finite volume approximations to the transient behavior of a semiconductor device on general 2D or 3D meshes. J. Comput. Math. 25 (2007), no. 4, 485-496.

        10、Min Yang, Yirang Yuan, A symmetric characteristic FVE method with second order accuracy for nonlinear convection diffusion problems. J. Comput. Appl. Math. 200 (2007), no. 2, 677-700.

        9、Min Yang, A second-order finite volume element method on quadrilateral meshes for elliptic equations. ESAIM: Math. Model. Numer. Anal. (M2AN)  40 (2006), no. 6, 1053-1067.

        8、Min Yang, Yirang Yuan, Symmetric finite volume element methods along characteristics for 3-D convection diffusion problems. Far East J. Appl. Math. 25 (2006), no. 3, 225-251.

        7、杨旻,袁益让,半正定两相驱动问题的多步有限体积方法及其理论分析,系统科学与数学,26(2006), 541-552.

        6、杨旻,袁益让,非线性抛物型方程组的二次有限体积方法及其误差估计,应用数学学报,29(2006),29-38.

        5、杨旻,张进,对流扩散方程带罚函数项的有限体积格式及其分析,高等学校计算数学学报,28(2006), 26-32

        4、Yang Min, Cubic finite volume methods for second order elliptic equations with variable coefficients, Northeast. Math. J. 21(2005), 146-152.

        3、杨旻,非线性抛物型方程的二次元有限体积方法,高等学校计算数学学报,26(2004), 257-266.

        2、杨旻,袁益让,非线性对流扩散方程沿特征线的多步有限体积格式, 计算数学,26(2004), 484-496.

        1、杨旻,非线性双曲型方程的广义差分方法及其误差估计,山东大学学报(理学版),38(2003), No.4,1-6.

       

       

Copyright © 2018 All Rights Reserved 烟台大学数学与信息科学学院
版权所有  鲁ICP备15000288 号