加入收藏 | 访问烟台大学首页
首页 > 师资力量 > 正文

郑甲山

作者: 时间:2021-11-22 点击数:

 

姓名

郑甲山

性别

出生年月

198410

民族

政治面貌

中共党员

职称/职务

教授

毕业学校

北京理工大学

学位

博士

专业

应用数学

研究方向

流体力学与偏微分方程理论

通信地址

中国山东省烟台市莱山区清泉路30

邮编

264005

联系电话

 

E-mail

zhengjiashan2008@163.com

时 间

单位

经 历

2017.12-2021.01

鲁东大学 数学与统计科学学院  

副教授

 

2021.01至今

烟台大学 数学与信息科学学院  

副教授

 

 

 

 

 

 

 

 

 

 

 

数学分析、常微分方程等

 




 

1.山东省省属高校优秀青年基金:与chemotaxis-(Navier)-Stokes相关的模型的理论分析及其应用,批准号:ZR2018JL005,主持人,24万,20183--202012; 结题;

2.国家自然科学青年基金:与趋化性系统相关的模型的理论研究,批准号: 1160121520171-201912月,主持人,19万,结题;

3. .12批博士后特别资助: 凯勒-西格尔(-纳维)-斯托克斯系统若干问题的研究 ,批准号:2019T12016820197-20219月,主持人,18万,结题;

4.山东省自然科学青年基金: 与趋化性机制相关的模型解的定性分析,批准号:ZR2016AQ1720167-20187月,主持人,9万,结题;

5.65批博士后基金,批准号:2019M65092720197-20209月,主持人,8万,结题。

[51] Jiashan Zheng ,Eventual smoothness and stabilization in a three-dimensional Keller-Segel-Navier-Stokes system with rotational flux,  Calculus of Variations and Partial Differential Equations, 已接受待发表.

[50]Dayong Qi and Jiashan ZhengA new result for the global existence and boundedness of weak solutions to a chemotaxis-Stokes system with rotational flux termZ. Angew. Math. Phys. (2021) 72:88.

[49]Jianing Xie , Jiashan Zheng , A new result on existence of global bounded classical

solution to a attraction-repulsion chemotaxis system

with logistic source,

Journal of Differential Equations 298 (2021) 159181 (SCI 大类二区权威IF 2.26).

[48] Jiashan Zheng , Yuanyuan Ke, Global bounded weak solutions for a chemotaxis-Stokes

system with nonlinear diffusion and rotation,

Journal of Differential Equations, 289 (2021) 182235. (SCI 大类二区权威IF 2.26).

[47] Zhi-An Wang, Jiashan Zheng ,

Global Boundedness of the Fully Parabolic Keller-Segel

System with Signal-Dependent Motilities, Acta Appl Math, (2021) 171:25.  (SCI 大类三区权威IF 1.6).

[46]Jiashan Zheng ,  Global Classical Solutions and Stabilization in a Two-Dimensional Parabolic-Elliptic KellerSegelStokes SystemJournal of Mathematical Fluid Mechanics, 23(2021), 1--25. (SCI 大类三区权威IF 1.6).

[45]Jiashan Zheng , Global existence and boundedness in a three‑dimensional

chemotaxis‑Stokes system with nonlinear diffusion

and general sensitivity Annali di Matematica Pura ed Applicatahttps://doi.org/10.1007/s10231-021-01115-4 (SCI 大类二区权威IF 2.0).

[44]Ling LiuJiashan Zheng , Gui BaoWeifang Yan, A new (and optimal)

result for the boundedness of a solution of a quasilinear chemotaxis–haptotaxis model

(with a logistic source), Journal of Mathematical Analysis and Applications,

491(2020), 124231.

[43]Jiashan Zheng ,A new result for the global existence (and boundedness) and regularity of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilizationJournal of Differential Equations,2722021, 164-202 (SCI 大类二区权威IF 2.26).

[42] Ling Liu,郑甲山*, A new result for boundedness in the

quasilinear parabolic–parabolic Keller–Segel model (with logistic source Computers & Mathematics with Applications, 2019(4)(79)( 2020), 1208-1221 SCI 大类二区IF 2.64).

[41] 郑甲山, Yuanyuan KeBlow-up prevention by nonlinear diffusion in a 2D Keller-Segel-Navier-Stokes system with rotational flux, Journal of Differential Equations, 11(268)(2020), 7092-7120 (SCI 大类二区权威IF 2.26).

[40] Ling Liu,郑甲山*, Gui BaoGlobal weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization, Discrete and Continuous Dynamical Systems-Series B, 25(2020), 3437-3460. (SCI 大类三区IF 1.12).

[39] Yuanyuan Ke, 郑甲山*, An optimal result for global existence in a three-dimensional Keller--Segel--Navier--Stokes system involving tensor-valued sensitivity with saturation, Calculus of Variations and Partial Differential Equations, 2019, 58(3): 109. (SCI大类二区权威IF 1.738).

 

[38] 郑甲山*, Yuanyuan Ke, Large time behavior of solutions to a fully parabolic chemotaxis--haptotaxis model in $N$ dimensions, Journal of Differential Equations 266 (2019) 1969–2018. (SCI大类二区权威IF 2.26).

[37]郑甲山*An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion

Journal of Differential Equations267(4) (2019), 2385-2415. (SCI大类二区权威IF 2.26).

[36] Xinchao Song,郑甲山*A new result for global solvability and boundedness in the N-dimensional quasilinear chemotaxis model with logistic source and consumption of chemoattractant, Journal of Mathematical Analysis and Applications,(475)(1)(2019),895-917. (SCI大类三区IF 1.31).

[35] Ling Liu,郑甲山*, Global existence and boundedness of solution of a parabolic--ODE--parabolic chemotaxis--haptotaxis model with (generalized) logistic source, Discrete and Continuous Dynamical Systems-Series B, 24.7 (2019): 3357-3377. (SCI大类三区IF 1. 12).

[34] YuanYuan Ke 郑甲山*, A note for global existence of a

two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, Nonlinearity, 31(2018) 4602–4620 (SCI大类二区权威IF 2.06).

[33] 郑甲山*, Yanyan Li A new result for global existence and boundedness of solutions to a parabolic--parabolic Keller--Segel system with logistic source, Journal of Mathematical Analysis and Applications, 462(1)(2018), 1--25. (SCI 大类三区IF 1.31).

[32]郑甲山* , Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system with nonlinear diffusionJournal of Differential Equations, 263(2017), 2606-2629. (SCI 大类二区权威IF 2.26).

[31]郑甲山* , Boundedness of solution of a higher-dimensional parabolic-ODE-parabolic chemotaxis--haptotaxis model with generalized logistic source, Nonlinearity, 30(2017) ,1987-2009 . (SCI 大类二区权威IF 2.06)

[30] 郑甲山*,Boundedness of solutions to a quasilinear higher-dimensional

chemotaxis-haptotaxis model with nonlinear diffusion, Discrete and Continuous Dynamical Systems- Series A, (37)(1)(2017), 627-643. (SCI 大类三区IF 1.35).

[29] 郑甲山*, Yifu Wang, A note on global existence to a higher-dimensional quasilinear chemotaxis system with consumption of chemoattractantDiscrete and Continuous Dynamical Systems - Series B, (22)(2)(2017), 669-686. (SCI大类三区IF 1. 12).

[28]郑甲山*, A note on boundedness of solutions to a higher-dimensional quasi-linear chemotaxis system with logisticsource,Zeitschriftfür Angewandte Mathematik und Mechanik, (97)(4)(2017) , 414-421. (SCI大类二区IF 1.332).

[27]郑甲山*, Boundedness and global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with nonlinear a logistic sourceJournal of Mathematical Analysis and Applications, 450(2017), 1047-1061. (SCI 大类二区IF 1.064).

26]郑甲山*,Boundedness in a two-species quasi-linear chemotaxis system with two chemicals, Topological methods in nonlinear analysis, (49)(2)(2017), 463-480. (SCI 大类三区IF 0. 667).

[25]郑甲山*, Yifu Wang, Boundedness and decay behavior in a higher dimensional quasilinear chemotaxis system with nonlinear logistic source, Computers & Mathematics with Applications, 72(10)(2016), 2604-2619. (SCI 大类三区IF 1.531).

[24]郑甲山*, Critical blow-up exponents for a non-local reaction-diffusion equation with nonlocal source and interior absorption, Nonlinear Analysis-Modelling and Control  journal, 21(5)(2016), 600-613. (SCI 大类二区IF 2.03).

[23]郑甲山*, Boundedness in a three-dimensional chemotaxis--fluid system involving the tensor-valuedsensitivity with saturation, Journal of Mathematical Analysis and Applications, 442(1) (2016), 353-375. (SCI 大类三区IF 1.120).

[22]Yifu Wang, 郑甲山*, Periodic solutions to a class of biological diffusion models with hysteresis effect, Nonlinear Analysis: Real World Applications, (27)(2016)297--311. (SCI 大类一区IF  IF 2.519).

[21]郑甲山, The bang-bang principle of time optimal controls for the

Kuramoto-Sivashinsky-KdV equation with internal control, International Journal of Robust and Nonlinear Control, (26)20161667–1685.  (SCI 大类二区IIF 3.176).

[20]郑甲山*, Yifu Wang, Boundedness of solutions to a quasilinear chemotaxis--haptotaxis model, Computers & Mathematics with Applications, 71(2016), 1898--1909.  (SCI IF 1.697).

[19]郑甲山*, Optimal control problem for Lengyel--Epstein model with obstacles and state constraints, Nonlinear Analysis-Modelling and Control, 21(1)(2016), 18--39. (SCI 大类二区 IF1.099).

[18]郑甲山*, Uniform blow-up rate for nonlocal diffusion equations with nonlocal nonlinear source, (39)(1),2016, Tokyo Journal of Mathematics. (SCI 大类四区IF 0.219)

[17]Ji LiuYifu Wang,郑甲山,Periodic solutions of a multi-dimensional Cahn-Hilliard equationElectronic Journal of Differential Equations(42)(2016), 1--23. (SCI 大类四区IF0.524).

[16]Ji Liu,郑甲山,Yifu Wang Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, Zeitschrift für angewandte Mathematik und Physik, 67(2) ,2016 DOI: 10.1007/s00033-016-0620-8. (SCI IF1.109).

[14]郑甲山, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, Journal of Differential Equations, 259(1)(2015), 120--140.  (SCI 大类二区权威IF 1.680). (该论文为ESI高被引论文)

[13]郑甲山, Yifu Wang, Well-posedness for a class of biological diffusion models with hysteresis effect, Zeitschrift für angewandte Mathematik und Physik, 66(3)(2015), 771--783. (SCI 大类二区 IF 1.109).

 

[12]郑甲山, Boundedness of solutions to a quasilinear parabolic--parabolic Keller--Segel system with logistic source, Journal of Mathematical Analysis and Applications, 431(2),2015, 867–888. (SCI 大类二区 IF 1.120).

[11]郑甲山, Yifu Wang, Periodic solutions of non-isothermal phase separation models with constraint, Journal of Mathematical Analysis and Applications, 432(2015), 1018--1038. (SCI大类二区 IF 1.120).

 

[10]郑甲山, Yuanyuan Ke, Yifu Wang, Periodic solutions to a heat equation with hysteresis in the source term, Computers & Mathematics with Applications, 69(2)(2015), 134--143.  (SCI 大类三区 IF 1.697).

[9]郑甲山*, Optimal controls of multi-dimensional modified Swift-Hohenberg equation, International Journal of Control, 88(10)20152117--2125. (SCI 大类三区 IF 1.654 ).

[8] 郑甲山*, Yifu Wang,Optimal control problem for Cahn-Hilliard equations with state constraint, Journal of Dynamical and Control Systems, 21(2)(2015), 257--272. (SCI大类四区  IF 0.492).

[7]Ji Liu, 郑甲山, Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source, Czechoslovak Mathematical Journal, 65(4)2015, 1117--1136. (SCI大类四区 IF 0.288).

[6]郑甲山*, Yifu Wang, Boundedness of solutions to a quasilinear parabolic—parabolic Keller--Segel system with supercritical sensitivity and logistic source,8th International Congress on Industrial and Applied Mathematics. ( EI).

[5]郑甲山*, Time optimal controls of the Lengyel-Epstein model with internal control, Applied Mathematics & Optimization, 70(2)(2014), 345--371. (SCI 大类三区IF 0.591).

 

[4] 郑甲山*, Time optimal controls of the Cahn--Hilliard equation with internal control, Optimal Control Applications and Methods, 36(4)2014, 566–582 . (SCI大类三区IF 0.903).

[3]郑甲山*, Yifu Wang, Time Optimal Controls of the Fitzhugh-Nagumo Equation with Internal Control, Journal of Dynamical and Control Systems,19(4)(2013), 483--501. (SCI 大类四区IF 0.492).

[2]Zhonghai Xu , 郑甲山, Zhenguo Feng, Existence and regularity of nonnegative solution of a singular quasi-linear anisotropic elliptic boundary value problem with gradient terms. , 74(3)( 2011), 739--756. (SCI大类二区 IF 1.327).

[1]Zhonghai Xu , Zhenguo Feng, 郑甲山, Existence and regularity of solution of mixed boundary value problem of Keldysh-equation with nonlinear absorb term Nonlinear Analysis: Theory, Methods & Applications, 74(1) (2011), 1--8. (SCI大类二区 IF 1.327).

   

 









 

Copyright © 2018 All Rights Reserved 烟台大学数学与信息科学学院
版权所有  鲁ICP备15000288 号