加入收藏 | 访问烟台大学首页
首页 > 师资力量 > 正文

李丹

作者: 时间:2021-11-10 点击数:

 

姓名

李丹

性别

出生年月

1991.11

 

民族

政治面貌

群众

职称/职务

副教授

毕业学校

中国科学院自动化研究所

学位

博士

专业

模式识别与智能系统

研究方向

多视图/多模态深度学习、计算机视觉、视觉信息编解码

通信地址

山东省烟台市清泉路烟台大学

邮编

264005

联系电话

 

E-mail

danliai@hotmail.com

   

 

单位

 

2010.09-2014.06

烟台大学

信息与计算科学  理学学士

2014.09-2017.06

上海大学

运筹学与控制论  理学硕士

2017.09-2021.06

中国科学院自动化研究所

模式识别与智能系统  工学博士

2021.7至今

烟台大学 数学与信息科学学院   计算科学系

讲师、副教授

 

 

 

   

 

  

1. 指导全国大学生数学建模比赛获山东省一等奖两项

2. 指导美国大学生数学建模比赛获国际一等奖 (M) 一项

 

 

1. 国家自然科学基金青年项目,面向分子性质预测的多视图表征学习方法研究,2024.01.01-2026.12.30,主持,在研

2. 山东省自然科学基金青年项目,基于深度学习的精细多模态融合和模态缺失关键技术研究及其应用,2023.01.01-2025.12.30,主持,在研

 

[1] Dan Li, Haibao Wang, Shihui Ying, Multiview Representation Learning with One-to-Many Dynamic Relationships. IEEE Transactions on Neural Networks and Learning Systems, 2024

[2] Dan Li, Haibao Wang, Yufeng Wang, Shengpei Wang, Instance-wise multi-view representation learning. Information Fusion, 2023

[3] Dan Li, Changed Du, Haibao Wang, Qiongyi Zhou, Huiguang He, Deep Modality Assistance Co-training Network for Semi-Supervised Multi-Label Semantic Decoding. IEEE Transactions on Multimedia, 2021

[4] Dan Li, Changde Du, Shengpei Wang, Haibao Wang, Huiguang He, Multi-subject Data Augmentation for Target Subject Semantic Decoding with Deep Multi-view Adversarial Learning. Information Sciences, 2020

[5] Dan Li, Changde Du, Huiguang He, Semi-supervised Cross-modal Image Generation with Generative Adversarial Networks. Pattern Recognition, 2019

[6] Dan Li, Changde Du, Lijie Huang, Zhiqiang Chen, Huiguang He, Multi-Label Semantic Decoding from Human Brain Activity. International Conference on Pattern Recognition, 2018

[7] Cong Xu, Dan Li, Min Yang, Adversarial momentum contrastive pre-training. Pattern Recognition Letters, 2022

[8] Yufeng Wang, Dan Li, Xiang Li, Min Yang. PC-GAIN: Pseudo-label conditional generative adversarial imputation networks for incomplete data. Neural Networks, 2021.

[9] Qiongyi Zhou, Changde Du, Dan Li, Bincheng Wen, Le Chang, Huiguang He, Interpretable Visual Neural Decoding with Unsupervised Semantic Disentanglement. Machine Intelligence Research, 2025

[10] Yixin Wang, Shuang Qiu, Dan Li, Changde Du, Bao-Liang Lu, Huiguang He, Multi-modal domain adaptation variational autoencoder for EEG-based emotion recognition. IEEE/CAA Journal of Automatica Sinica, 2022

[11] Qiongyi Zhou, Changde Du, Dan Li, Haibao Wang, Jian K Liu, Huiguang He, Neural encoding and decoding with a flow-based invertible generative model. IEEE Transactions on Cognitive and Developmental Systems, 2022

[12] Wei Wei, Shuang Qiu, Xuelin Ma, Dan Li, Bo Wang, Huiguang He, Reducing Calibration Efforts in RSVP Tasks with Multi-source Adversarial Domain Adaptation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020

[13] Haibao Wang, Lijie Huang, Changde Du, Dan Li, Bo Wang, Huiguang He, Neural Encoding for Human Visual Cortex with Deep Neural Networks Learning “What” and “Where”. IEEE Transactions on Cognitive and Developmental Systems, 2020

[14] Qiongyi Zhou, Changde Du, Dan Li, Haibao Wang, Jian K. Liu, Huiguang He,Simultaneous Neural Spike Encoding and Decoding Based on Cross-modal Dual Deep Generative Model. International Joint Conference on Neural Networks, 2020

[15] Zhiqiang Chen, Changde Du, Lijie Huang, Dan Li, Huiguang He, Improving Image Classification Performance with Automatically Hierarchical Label Clustering. International Conference on Pattern Recognition, 2018

[16] Bo Wang, Wei Wei, Shuang Qiu, Shengpei Wang, Dan Li, Huiguang He, Boundary Aware U-Net for Retinal Layers Segmentation in Optical Coherence Tomography Images. IEEE Journal of Biomedical and Health Informatics, 2021

     

 

 

Copyright © 2018 All Rights Reserved 烟台大学数学与信息科学学院
版权所有  鲁ICP备15000288 号