加入收藏 | 访问烟台大学首页
首页 > 师资力量 > 正文

曲风龙

作者: 时间:2018-06-08 点击数:

 

姓名

曲风龙

性别

出生年月

1980.03

民族

政治面貌

中共党员

职称/职务

副教授

毕业学校

中国科学院数学与系统科学研究院

学位

博士

专业

计算数学

研究方向

电磁反散射问题的理论研究及其数值算法

通信地址

烟台市莱山区清泉路30号数学与信息科学学院

邮编

264005

联系电话

0535-6902406

E-mail

fenglongqu@amss.ac.cn

历(从大学填起)

时 间

单位

经 历

1999.09—2003.07

曲阜师范大学

理学学士

2003.09—2006.07

首都师范大学

理学硕士

2006.092009.07

中国科学院数学与系统科学研究院

理学博士

2009.072014.12

烟台大学

讲师

2018.092019.09

美国得克萨斯大学奥斯汀分校(The university of Texas at Austin

访问学者

2009.07—至今

烟台大学

副教授

 

1)担任基础部主任,一直致力于公共基础课程的教学和教学安排工作。

22012年青年教师讲课比赛校级二等奖。

32013年校级优秀学士论文指导教师。

420162018年获得全国大学生数学竞赛“山东省优秀指导教师”的称号。

 

 

 

 

 

 

*  主持基金,国家自然科学基金面上基金:流固耦合散射问题的数学理论与数值算法;63万,项目编号:11871416;起止年月:20191-202212月;

*  主持基金,国家自然科学基金青年基金:电磁散射中的无穷曲面锥形散射问题及其反问题;23万,项目编号:11401513;起止年月:20151-201712月;

*  主持基金,国家自然科学基金天元基金:无穷曲面散射问题与非齐次传导介质散射问题,3万, 项目编号:11026098,起止年月:20111-201112月;

 主持基金,山东省统计局重点项目:我省工业部门投资对经济增长的影响;0.5万,起止年月:20155-20165月;

*  参与基金(2/5),国家自然科学基金青年基金:一类空间奇异反应对流扩散方程的行波解与交互作用;22万,项目编号为:11201402;起止年月:20131-201512月;

*  参与基金(2/5),山东省面上基金项目:高维空间非平面行波解的交互作用;项目编号:ZR2017MA044;起止年月:20178月-20206月。

 

Submitted (2019)

[1] Fenglong Qu, Jiaqing   Yang*, Unique determination on inverse electromagnetic scattering by a   two-layered cavity, (Submitted to Inverse Problems) (2019)

[2] Fenglong Qu, Haiwen   Zhang, Bo Zhang*, A Novel integral equation for scattering by a locally rough   surface and application to the inverse problem: the Neumann case, (Submitted   to SIAM Journal on Scientific Computing) (2019)

[3] Fenglong Qu, Jiaqing   Yang*, Determining an unbounded bi-periodic interface for the inverse   fluid-solid interaction problem, (Submitted to SIAM Journal on Applied   Mathematics) (2019)

 

Published

[1] Fenglong Qu, jiaqing Yang and Haiwen Zhang, Shape reconstruction in inverse   scattering by an inhomogeneous cavity with internal measurements Accepted   by SIAM Journal on   Imaging Sciences (2019).  

[2] Fenglong Qu and Haiwen Zhang, Locating a complex   inhomogeneous medium with an approximate factorization method, Accepted by   Inverse Problems (2019), https://iopscience.iop.org/ article/10.1088/1361-6420/ab039a.   or arXiv:1811.00905


[3] Fenglong Qu,   Jiaqing Yang*, Bo Zhang, Recovering an elastic obstacle containing   embedded objects by the acoustic far-field measurements, Inverse Problems, Vol. 34(1), 015002, (2018).

[4] Fenglong Qu,   Jiaqing Yang*, On recovery of an inhomogeneous cavity   in inverse acoustic scattering, Inverse Problems and Imaging Vol.12(2) , (2018) 281-291.

[5] Fenglong Qu, Jiaqing Yang*, Bo Zhang, An approximate   factorization method for inverse medium scattering with unknown buried   objects, Inverse Problems Vol. 33(3), 035007 (2017).

[6] Guanghui Hu,   Xiaodong Liu, Fenglong Qu, Bo Zhang*, Variational Approach to Rough   Surface Scattering Problems with Neumann and Generalized Impedance Boundary   Conditions, Communications in Mathematical   Sciences, Vol. 13(2) pp.511-537, (2015).

[7] Fenglong Qu*,   Yaping Wu, The Global Existence of Solutions for Two classes of Chemotaxis   Models, Acta Mathematicae Applicatae Sinica English Series Vol. 30(3)   PP.555-570, (2014).

[8] Fenglong Qu*,   Uniqueness in inverse electromagnetic conductive scattering by penetrable and   inhomogeneous obstacles with a Lipschitz boundary, Abstr. Appl. Anal. Volume   2012, PP.1-21, (2012).

[9] Guanghui Hu, Fenglong   Qu, Bo Zhang*, A linear sampling method for inverse problems of   diffraction gratings of mixed type, Math. Method. Appl. Sci. Vol. 35(9), PP.1047-1066, ( 2012).

[10] Xiliang Li, Fenglong   Qu*, Almost automorphic mild solutions to some fractional delay   differential equations, Annals of Differential Equations. Vol 28(4),   PP.412-416, (2012).

[11] Fenglong Qu*, Rough Surface Scattering   Problem for energy absorption medium, IEEE The World Congress on   Engineering and Technology. PP.653-656, (2011).

[12] Guanghui   Hu, Fenglong Qu, Bo Zhang*, Direct and Inverse Problems for Electromagnetic   Diffraction by a Doubly Periodic Structure with a Partially Coated Dielectric,   Math. Method. Appl. Sci. Vol 33(2), PP.147-156, (2010).

 

 

 

 

   

 










 

Copyright © 2018 All Rights Reserved 烟台大学数学与信息科学学院
版权所有  鲁ICP备15000288 号